

Artificial Intelligence and Nursing Practice

Jeanine Santelli, PhD, RN, AGPCNP-BC, FAAN

Faith Community Nurse

ANA-NY Executive Director

Overview

Artificial Intelligence (AI) is a tool that has and will continue to create a revolutionary change in health care delivery. It has improved surveillance and predictive intervention in public health. It is helpful in managing polypharmacy by identifying potential and actual drug-drug interactions, contraindications, and prevention of adverse events. It enhances patient scheduling and triage. It provides support for clinical decision-making, disease management, patient engagement, and improvement in operational efficiencies.

AI is also a challenge based on the non-transparency of data sources that are being used to create algorithms. Patient privacy is a slippery slope as data is being mined to enhance the large language model sources. Biases and hallucinations (factually incorrect outputs) can skew the outputs and lead to amplified health disparities and dangerous outcomes (Mello & Guha, 2023).

Definitions

Predictive artificial intelligence is technology that simulates human intelligence. This type of technology has been used in health care for decades. It uses machine learning techniques and data to generate algorithms that classify or predict things (Dillard-Wright & Smith, 2025). An example would be cardiac monitors that track electrocardiogram (EKG) feed, identify rhythms, and alarm if potentially dangerous rhythms are detected.

We have now moved into an era of **generative** AI. Computers trained on large language models are now able to create content (Yakusheva et al., 2025). Complex mathematical formulas take information, perform calculations, and return results based on the data accessed as determined by prompts entered by humans.

Current Environment

Our current environment provides us with some areas that are worrisome. It is of concern that AI has received less testing than most other clinical innovations and errors may

propagate if biases and assumptions of the model are not tested and corrected. As with all aspects of health care, the nurse is the last line of defense. If an AI platform suggests a clinical course of action or makes a clinical decision, the nurse is the one at the patient's side making the final safety determination and explaining the care to the patient (Dillard-Wright & Smith, 2025; Shepherd et al., 2025). AI can assist in helping to identify patient risk by identifying patterns of symptoms and offering a course of action based on pre-determined algorithms (Pinto & Jackson, 2025). However, just as one might question an order that does not seem appropriate in the present circumstances, one must also question an AI output that does not seem "quite right." Nurses are still responsible for their actions based on both clinical decision-making skills and intuition (Pinto & Jackson, 2025).

Nursing is both a science and an art. Overreliance on AI outputs could potentially erode both professional autonomy and human connections. Human-centered care guided by nursing values and standards must be maintained as these tools are integrated into health care delivery (Yanto et al., 2025). Nursing may be pulled from direct patient care into the management of AI technologies such as troubleshooting software issues, re-entering data, and identifying and mitigating software errors (Dillard-Wright & Smith, 2025).

Another concern is the security and accuracy of data and patient privacy. How and from whom is the patient data collected and used (Dillard-Wright & Smith, 2025; O'Neil, 2016)? These large language models collect data from a vast number of sources with inherent risks of misuse or bias (Bodur et al., 2025). Concern also arises that nursing data, such as nursing notes and plans of care, are not being used to the same degree as other professions' data in designing and constructing the nursing care algorithms, in other words, other professions' data is being used to determine nursing care (Pinto & Jackson, 2025).

Environmental Impact

As demand for AI increases, so does the impact on the environment. Aging power grids are being strained to a breaking point requiring diesel backup generators to supplement the power load of generative AI training which is seven or eight times that of predictive computing and new models are released for training every few weeks as previous versions are retired. Once "trained" the energy load continues, for example, "a Chat GPT query consumes about five times more electricity than a simple web search" (Zewe, 2025).

Hardware components require plastics, silicon, gold, copper, and aluminum. Mining of minerals has local environmental consequences to the water, air, and soil and the subsequent non-recyclable e-waste (Hosseini et al., 2025). Fine particulate matter and

emissions from diesel generators are being released into the air raising respiratory health risks including asthma, lung cancer, heart attacks, and death (Ren & Wierman, 2025).

Water used to cool the computing servers is impacting this finite resource and the surrounding ecosystem. To give a sense of scope, it is predicted that globally in 2026 data centers will use nearly 1,050 terawatts of electricity. Each kilowatt of energy requires two liters of chilled water for cooling. That corresponds to 2,000,000,000 liters or 528,344,354 gallons of water, nearly twice the amount of water that will be consumed in New York City in 2026 (Ren & Wierman, 2025; Zewe, 2025).

Argument for AI

AI can ease workloads and predict or identify problem areas. It can be used to optimize clinical workflows, enhance diagnostic accuracy, improve patient outcomes, and improve patient engagement. These predictors have the potential to eventually move the health care system from a reactive into a probabilities care model. Science can be enhanced through faster research and collaborative scholarly writing (Ahmed, 2024). AI has the potential of performing tedious, repetitive tasks such as errands and documentation, thus freeing up nurses' time to more fully assess, teach, and evaluate their patients and the care provided (Yakusheva et al., 2025). A risk that could come from this off-loading of tasks is the reduction of the currently over-stretched health care workforce. Employers might see the implementation of AI as an opportunity to decrease the number of nurses needed to provide quality care, further increasing the nurse-patient ratios. Nurses must be involved in the development and implementation of AI which can help support nursing workload, enhance patient care, and reduce burnout through improved efficiency (Beaudet & Turchioe, 2025; Bodur et al., 2025). These technologies need to be implemented in ways that add value to nursing care (Shepherd et al., 2025). Population health management through the use of predictive analytics can improve patient outcomes and add efficiencies to nursing care. Nurses would have the capability of providing specific community-based programming and resource allocation (Wei et al., 2025).

Recommendations

Nursing education has current and expanding opportunities to integrate AI and teach the current and future nurses how to safely and ethically use AI. Simulation and virtual reality exercises have become more common in nursing programs. AI-powered standardized patients and telepresence robots are being integrated into education to expand clinical experiences without continued burden on the health care partners. AI is also being used in predictive models to identify students and provide focused tutoring to those who may need

additional support to be successful in their nursing education. AI can also be used for program evaluation with appropriate training of the faculty (Chicca et al., 2025). As with patient care applications, overreliance on AI can be problematic and may perpetuate imbalance in decisions, interventions, and outcomes, based on the data used for the model – garbage in, garbage out. Nursing faculty must ensure that AI is an enhancement, not a distraction from the college experience (Doston et al., 2025).

As AI platforms are being evaluated for implementation in areas that influence health care, it is imperative that the hosting company be reviewed for the inclusion of nurses on their research and development teams. Nurses need to be involved in the development of these tools and have direct negotiation in the development, selection and integration of these models in nursing education and the workplaces (Walker, 2025; Yakusheva et al., 2025). Engagement of nurses can prevent the disconnect that comes when innovative technologies are designed to support the workload but instead impede the workload of the nurse. If nurses can approach further development of AI tools with an open mind and a willingness to be involved in advances, they can be advocates for where, when, and how AI is deployed into health care and nursing education (Khatib & Ndiaye, 2025; Yakusheva et al., 2025). Nurses can craft AI's role to ensure safety remains at the center of patient care and delineate how nursing's role can expand to the full scope of nursing practice. Feedback must be provided to the companies creating and marketing AI health care products that the title "nurse" is protected and cannot be used for non-human, unlicensed technologies.

Nurses need to be provided the training and be aware of the risks that can go with technology and be able to educate patients about their rights to consent or decline access to personal information for data mining. This is a tool, but not a replacement for critical thinking, clinical judgement, clinical decision-making, ethical care, and empathy. The nurse is ultimately responsible for their nursing practice. They are legally and ethically accountable for their decisions, actions, and behaviors (ANA, 2025; Yakusheva et al., 2025). It can easily be relied on without verification and provides a danger to patients through data bias or faulty algorithms (Brydges, 2025; Jeffries, 2025). It is imperative that nurses have competency in digital literacy, ethical reasoning, and critical engagement with AI tools (ANA, 2025; Bodur et al., 2025).

Health systems should consider interdisciplinary oversight committees that include nurses reviewing the algorithms, creating governance structures, and educating the public and staff about the strengths and weaknesses of the technology (Brydges, 2025; Jeffries, 2025). Nurses need to be involved in the review of the outputs of AI to screen for accuracy and

help prevent further health inequities. Algorithms trained on data containing historical biases can perpetuate unfair or discriminatory outcomes and exacerbate health disparities (ANA, 2025; Dillard-Wright & Smith, 2025; Gianfrancesco et al., 2018). Not only can the patient data be biased, the perspective of nursing and the role of the nurse can be biased (Reed et al., 2025).

Nurses, as the frontline for public health, must be actively involved in reducing the impact of AI from the development and implementation of AI models to the location of data centers, the temperature-controlled facility that houses servers, data storage drives, and network equipment. Any organization or individual who deploys cloud-based AI can make critical choices to lower the impact on the health of the public through promotion of sustainable practices. Standardized reporting of health impacts should be required. Data centers can be operated in a decentralized model to decrease the impact in any single region. Data centers should be located in areas that do not already have severe air pollution or other health risk factors and do have pollutant-free energy sources available (Hosseini et al., 2025; Ren & Wierman, 2025; Zewe, 2025).

Resources

Abdelmohsen, S. A. & Al-jabri, M. M. (2025). Artificial intelligence applications in healthcare: A systemic review of their impact on nursing practice and patient outcomes. *Journal of Nursing Scholarship*, 57(6). <https://doi.org/10.1111/jnu.70040>

Ahmed, S. K. (2024). Artificial intelligence in nursing: Current trends, possibilities and pitfalls. *Journal of Medicine, Surgery, and Public Health*, 3. <https://doi.org/10.1016/j.jglmedi.2024.100072>

American Association of Colleges of Nursing (AACN). (2021). *The Essentials: Core competencies for professional nursing education*.

American Nurses Association (ANA).

<https://www.nursingworld.org/search/?q=artificial+intelligence+in+nursing>

American Nurses Association (ANA) Center for Ethics and Human Rights. (2022). *The ethical use of artificial intelligence in nursing practice*. https://www.nursingworld.org/globalassets/practiceandpolicy/nursing-excellence/ana-position-statements/the-ethical-use-of-artificial-intelligence-in-nursing-practice_bod-approved-12_20_22.pdf

American Nurses Association (ANA). (2025). *Code of ethics for nurses*.

Asser, J. (2025). The next evolution of the hybrid workforce. *Healthleaders*.

<https://www.healthleadersmedia.com/cno/next-evolution-hybrid-workforce>

Beaudet, O., & Turchioe, M. R. (2025). What do nursing and AI have in common? No one understands them. <https://www.linkedin.com/pulse/one-understands-nursing-artificial-intelligence-beaudet-dnp-rn-faan-259xe/>

Bodur, G., Cakir, H., Turan, S., Seren, A. K. H., & Goktas, P. (2025). Artificial intelligence in nursing practice: A qualitative study of nurses' perspectives on opportunities, challenges, and ethical implications. *BMC Nurse*. <https://doi.org/10.1186/s12912-025-03775-6>

Brydges, G. (2025). Artificial intelligence in nursing practice: Decisional support, clinical integration, and future directions. *The Online Journal of Issues in Nursing*, 30(2). <https://doi.org/10.3912/OJIN.Vol30No02Man04>

Can Artificial Intelligence Chatbots Convincingly Mimic Empathy? (2023). *AJN, American Journal of Nursing*, 123(8), 13.

<https://doi.org/10.1097/01.NAJ.0000947408.14007.54>

Chicca, J., Chicca, D., & Shellenbarger, T. (2025). Artificial Intelligence Meets Accreditation to Modernize Nursing Education. *Nurse Educator*, 51(1), 7–12. <https://doi.org/10.1097/NNE.0000000000001975>

Choi, E. P. H., Chan, E. A., Yorke, J., Wan, A. W. H., Chan, M. M. K., Cheung, D. S. K., & Wang, L. (2025). Integration of Artificial Intelligence in Nursing Simulation Education: A Scoping Review. *Nurse Educator*, 50(4), 195–200. <https://doi.org/10.1097/NNE.0000000000001851>

Davis, S., Anglade-McCormick, M., Velez, K., Nichols, M., Engle, S., Chargualaf, K., & Bruder, R. (2025). Artificial Intelligence: What Does It Mean for Medical-Surgical Nursing Practice?. *MEDSURG Nursing*, 34(5), 215 241-221. <https://doi.org/10.62116/MSJ.2025.34.5.215>

Dillard-Wright, J. & Smith, J. (2025). An ethics of artificial intelligence for nursing. *The Online Journal of Issues in Nursing*, 30(2). <https://doi.org/10.3912/OJIN.Vol30No02Man06>

Donner, K., Rodak, T., Soklaridis, S., Maslej, M., Sockalingam, S., Adirim, Z., Thakur, A., & Costa-Dookhan, K. A. (2025). Applications of Artificial Intelligence for Nonpsychomotor Skills Training in Health Professions Education: A Scoping Review.

Academic Medicine, 100(5), 635–644.

<https://doi.org/10.1097/ACM.0000000000005983>

Doston, T., Fontenot, J., Morris, D., & Hebert, M. (2025). The use of artificial intelligence in nursing education: A scoping review. *Journal of Nursing Education*, 64(8), 479-488. <https://doi.org/10.3928/01484834-20250313-03>

Felsman, I. C., Colbert, B., Gedzyk-Nieman, S. A., Ledbetter, L., Lewis, L. S., Brennan-Cook, J., & Hartman, A. M. (2024). Artificial Intelligence and Admissions to Health Professions Educational Programs: A Scoping Review. *Nurse Educator*, 50(1), E13-E18. <https://doi.org/10.1097/NNE.0000000000001753>

Gerdes, M., Henry, K., Bayne, A., Vance, A., Winston, S., Ludwig, B., Stephenson, L., & Wessol, J. (2024). Emerging Artificial Intelligence-Based Pedagogies in Didactic Nursing Education: A Scoping Review. *Nurse Educator*, 50(1), E7-E12. <https://doi.org/10.1097/NNE.0000000000001746>

Gianfrancesco, M. A., Tamang, S., Yazdany, J., & Schmajuk, G. (2018). Potential biases in machine learning algorithms using electronic health record data. *JAMA Int Med.*, 178:1544–7. <https://doi.org/10.1001/jamainternmed.2018.3763>

Hao, K. (2025). *Empire of AI: Dreams and nightmares in Sam Altman's OpenAI*. Penguin Press.

Ho, K., Chong, D., Yeung, J., Tsang, J., & Cheung, J. (2025). Artificial intelligence-based technology in communication training in nursing education: A scoping review. *Journal of Professional Nursing*, 59, 40–50. <https://doi.org/10.1016/j.profnurs.2025.04.011>

Hosseini, M., Gao, P., & Vivas-Valencia, C. (2025). A social-environmental impact perspective of generative artificial intelligence. *Environmental Science and Ecotechnology*, 23, 100520.

Jeffries, E. (2025). Nursing leaders urge caution as AI spreads in care. *Beckers Health IT*. <https://www.beckershospitalreview.com/healthcare-information-technology/ai/nursing-leaders-urge-caution-as-ai-spreads-in-care/>

Jeffries, E. (2025a). Virtual nursing 2.0: How hospitals are moving beyond the pandemic playbook. *Beckers Health IT*. <https://www.beckershospitalreview.com/healthcare-information-technology/innovation/virtual-nursing-2-0-how-hospitals-are-moving-beyond-the-pandemic-playbook/>

Jefferies, E. (2025b). Hospitals tap nurses to co-create bedside technology. *Beckers Health IT*. <https://www.beckershospitalreview.com/healthcare-information-technology/ehrs/hospitals-tap-nurses-to-co-create-bedside-technology/>

Khatib, I. A. & Ndiaye, M. (2025). Examining the role of AI in changing the role of nurses in patient care: Systematic review. *JMIR Nurse*. <https://doi.org/10.2196/63335>

Khawaja, Z., Byrnes, K. G., & Adhoni, M. Z. U. (2025). Generative artificial intelligence powered chatbots in urology. *Current Opinion in Urology*, 35(3), 243–249. <https://doi.org/10.1097/MOU.0000000000001280>

Mello, M. M., & Guha, N. (2023). ChatGPT and physicians' malpractice risk. *JAMA Health Forum*, 4(5). <https://doi.org/10.1001/jamahealthforum.2023.1938>

Mello, M. M., & Guha, N. (2024). Understanding liability risk from using health care artificial intelligence tools. *The New England Journal of Medicine*, 390(3), 271-278. <https://doi.org/10.1056/NEJMhle2308901>

Morris, D., Fontenot, J., Hebert, M., & Doston, T. (2025). The Use of Artificial Intelligence in Nursing Education: A Scoping Review. *Journal of Nursing Education*, 64(8), 479–488. <https://doi.org/10.3928/01484834-20250313-03>

National Organization of Nurse Practitioner Faculties (NONPF). <https://www.nonpf.org/search/all.asp?bst=AI>

O'Neil, C. (2016). *Weapons of math destruction: How big data increases inequality and threatens democracy*. Crown

Oermann, E. K., & Kondziolka, D. (2023). On Chatbots and Generative Artificial Intelligence. *Neurosurgery*, 92(4), 665–666. <https://doi.org/10.1227/neu.0000000000002415>

Østergaard, S. D. (2023). Will Generative Artificial Intelligence Chatbots Generate Delusions in Individuals Prone to Psychosis?. *Schizophrenia Bulletin*, 49(6), 1418–1419. <https://doi.org/10.1093/schbul/sbad128>

Østergaard, S. (2025). Generative Artificial Intelligence Chatbots and Delusions: From Guesswork to Emerging Cases. *Acta Psychiatrica Scandinavica*, 152(4), 257–259. <https://doi.org/10.1111/acps.70022>

Phillips, B. (2025). Embracing a Thoughtful Integration of Artificial Intelligence Into Nursing Education. *CIN: Computers, Informatics, Nursing*, 43(12). <https://doi.org/10.1097/CIN.0000000000001315>

Pinto, M. D. & Jackson, J. M. (2025). Applying artificial intelligence to electronic health record data to advance symptom phenotyping: A brief practical guide. *The Online Journal of Issues in Nursing*, 30(2). <https://doi.org/10.3912/OJIN.Vol30No02Man03>

Rathje, S., Gvirtz, A., He, J., & Wallis, F. (2025). Artificial intelligence chatbots mimic human collective behaviour. *British Journal of Psychology* <https://doi.org/10.1111/bjop.12764>

Reed, J., Dodson, T. M., Petrinec, A. B., Tennant, D., Chmelik, J., & Cripple, S. (2025). Artificial intelligence and images portraying nurses through the decades. *The Online Journal of Issues in Nursing*, 30(2). <https://doi.org/10.3912/OJIN.Vol30No02Man05>

Ren, S. & Wierman, A. (2025). Mitigating the Public Health Impacts of AI Data Centers. *Harvard Business Review*. <https://hbr.org/2025/11/mitigating-the-public-health-impacts-of-ai-data-centers>

Ronquillo, C., Herbert, D., De Torres, R., Farmer, M., Bautista, J., & Soriano, G. (2025). Health Consumers' Use and Perceptions of Health Information from Generative Artificial Intelligence Chatbots: A Scoping Review. *Applied Clinical Informatics*, 16(4), 892–902. <https://doi.org/10.1055/a-2647-1210>

Shepherd, J. & McCarthy, A. (2025). Advancing nursing practice through artificial intelligence: Unlocking its transformative impact. *The Online Journal of Issues in Nursing*, 30(2). <https://doi.org/10.3912/OJIN.Vol30No02Man01>

Stanford Health Policy. (n.d.). *Ethical obligations to inform patients about the use of AI tools*. <https://healthpolicy.fsi.stanford.edu/news/ethical-obligations-inform-patients-about-use-ai-tools>

Stanford University. (n.d.). *Healthcare ethical assessment lab for artificial intelligence*. <https://heal-ai.stanford.edu/>

Titus, B. G., & Titus, S. K. (2025). Navigating Artificial Intelligence in Christian Nursing Education. *Journal of Christian Nursing*, 42(4), 214–215. <https://doi.org/10.1097/CNJ.0000000000001284>

Walker, R. (2025). Digital defense toolkit: Protecting ourselves from artificial intelligence-related harms. *The Online Journal of Issues in Nursing*, 30(2). <https://doi.org/10.3912/OJIN.Vol30No02Man02>

Wang, L., Alderden, J., Davis, M., Gallegos, C., & Kausler, R. (2024). Can Artificial Intelligence Chatbots Improve Mental Health?: A Scoping Review. *CIN: Computers, Informatics, Nursing*, 42(10), 731–736.

<https://doi.org/10.1097/CIN.0000000000001155>

Wei, Q., Pan, S., Liu, X., Hong, M., Nong, C., & Zhang, W. (2025). The integration of AI in nursing: Addressing current applications, challenges, and future directions. *Frontiers in Medicine*. <https://doi.org/10.3389/fmed.2025.1545420>

Yakusheva, O., Bouvier, M. J., & Hagopian, C. O. P. (2025). How artificial intelligence is altering the nursing workforce. *Nursing Outlook* 73(1).

<https://doi.org/10.1016/j.outlook.2024.102300>

Yanto, A., Nurmalia, D., Ilkafah, I., Suhariyati, S., & Pandin, M. G. R. (2025). The impact of artificial intelligence on nursing practice in hospital settings: A philosophical and professional perspective.

https://www.researchgate.net/publication/397080904_The_Impact_of_Artificial_Intelligence_on_Nursing_Practice_in_Hospital_Settings_A_Philosophical_and_Professional_Perspective

Zewe, A. (2025). Explained: Generative AI's Environmental Impact. *MIT News*.

<https://sustainability.mit.edu/article/explained-generative-ais-environmental-impact>